

Vehicle Technologies Program

Overview of the Heavy Truck Engine and Enabling Technologies R&D

Roland Gravel
Advanced Combustion Engine R&D Subprogram
Vehicle Technologies Program

Presented at the
2009 DOE Hydrogen Program and Vehicle
Technologies Program Annual Merit Review
Arlington, VA
May 2009

Vehicle Technologies Program Mission

To develop more energy efficient and environmentally friendly highway transportation technologies that enable America to use less petroleum.

--EERE Strategic Plan, October 2002--

- Undertake High-Risk Mid- to Long-Term Research
- Utilize Unique National Lab Expertise and Facilities
- □ Help Create a National Consensus
- Work Cooperatively with Industry

Advanced Combustion Engine R&D

Strategic Goal: Reduce petroleum dependence by removing critical technical barriers to mass commercialization of high-efficiency, emissions-compliant internal combustion engine (ICE) powertrains in passenger and commercial vehicles

Primary Directions

- ICE efficiency improvements for cars, light- and heavy-duty trucks through low-temperature combustion and minimization of thermal and parasitic losses
- Aftertreatment development integrated with combustion strategies for emissions compliance and minimization of efficiency penalty
- Waste energy recovery with thermoelectrics
- Coordination with fuels R&D to enable clean, high-efficiency engines using hydrocarbon-based (petroleum and non-petroleum) fuels and hydrogen

Performance Targets

	2010 (light-duty)	2017 (heavy-duty)
Engine brake thermal efficiency	45%	55%
Powertrain cost	< \$30/kW	
NOx & PM emissions	Tier 2, Bin5	EPA Standards

Heavy Truck Engine and Enabling Technologies R&D

Goal

□ By 2017, develop the technologies that will increase the thermal efficiency of heavy truck engines to at least 55 percent while meeting prevailing EPA emissions standards.

- □ Increasing Efficiency
- □ Reducing Emissions
- Ensuring Durability
- Maintaining or Reducing Cost

Research Approach

Advanced Combustion Engine R&D

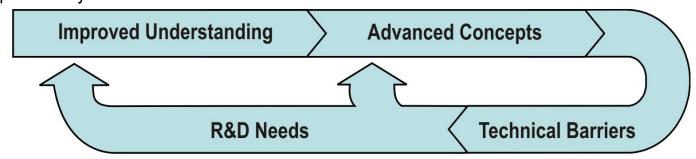
Industry

Fundamental Research

Applied Research

Technology Maturation & Deployment

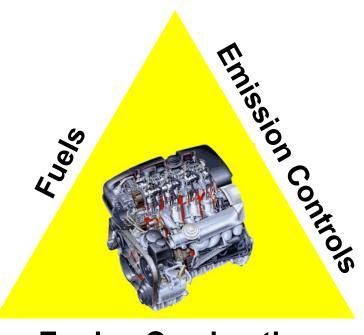
Fundamental R&D


- SNL Low Temperature Combustion
- PNNL Catalyst Characterization (NOx and PM Control)
- ANL X-ray Visualization of fuel sprays
- LLNL Chemical kinetics models (LTC and emissions)
- LANL CFD modeling of combustion
- Universities (U. of WI, Texas A&M, U. of MI, MIT, others) –
 Complementary research

Fundamental to Applied Bridging R&D

- ORNL Experiments and simulation of engines and emission control systems (bench-scale to fully integrated systems)
 - ANL H₂-fueled ICE; fuel injector design

Competitively Awarded Costshared Industry R&D


- Auto and engine companies engine systems
- Suppliers enabling technologies (sensors, VVA, WHR)

Commercial Product

Systems Approach to Dramatically Improve Diesel Engine Efficiency and Reduce Emissions

- Partnerships with auto/truck manufacturing industry, energy companies, suppliers and national laboratories
- Improve fundamental understanding
- Use integrated systems approach
- Progress made in all 3 areas

Engine Combustion

Auto ← Light Truck ← Heavy Truck

R&D Coordinated with 21st **Century Truck Partnership**

Research, Development and Demonstration in Five Key Technology Areas

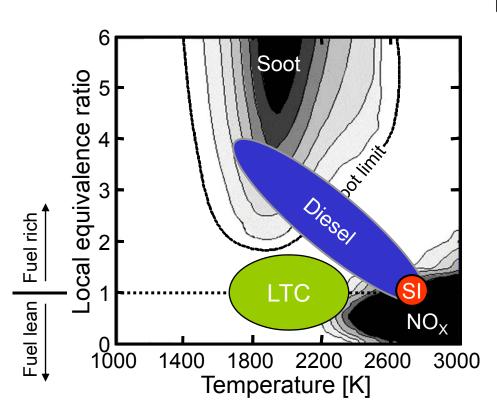
DOF/FFRF FreedomCAR and Vehicle Technologies

DOD/Army TACOM NAC Military Vehicle R&D

DOT / RSPA Intelligent Vehicle and Highway Safety R&D

EPA Vehicle Emissions Regulations

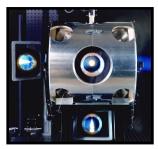
Safety



Engine Combustion Research

Focus On Low-Temperature Combustion (LTC) Strategies

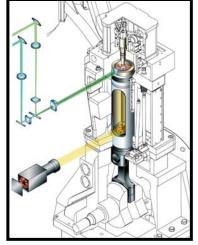
Potential to enable high-efficiency and low-emission operation



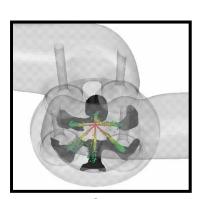
- □ LTC used generically to represent many processes
 - Homogeneous-Charge Compression-Ignition (HCCI)
 - Premixed-Charge Compression-Ignition" (PCCI), SCCI, HECC, MK, UNIBUS, ...
- □ Challenges
 - Combustion phasing
 - Load range
 - Heat release rate
 - Transient control
 - HC and CO emissions
 - Fuel

Research Approach

- □ Close collaboration between industry, national labs and universities
 - Research guided by industry needs
 - DOE/industry prototype engine projects
- □ Close coupled modeling and experiments
 - Multi-/single-cylinder engines & simulators
 - Advanced diagnostics
 - Optical-, laser-, and x-ray- based techniques
 - Multi-dimensional computational models



LTC Simulator


Multi-Cylinder Diesel

Optical Engine

Nozzle Sac X-Ray Image

Engine Simulation

3-Million Cell LES Grid

Advanced Combustion Engine R&D Budget by Activities

Major Activities	FY 2007 Appropriation	FY 2008 Appropriation	FY 2009 Appropriation
Advanced Combustion Engine R&D	\$48,346K	\$44,591K	\$40,800K
Combustion and Emission Control *	26,778	38,815	35,089
Heavy Truck Engine**	14,495	0	0
Solid State Energy Conversion***	4,579	4,527	4,568
Health Impacts**	2,494	0	0
SBIR/STTR		1,248	1,143

Changes in FY 2008 Request

^{*}Expanded to include Heavy Truck Engine and Health Impacts.

^{**}Incorporated within expanded Combustion and Emission Control R&D.

^{***}Formerly Waste Heat Recovery